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Abstract

The aim of this paper is to describe some results concerning the geometry of Lorentzian manifolds
admitting Killing spinors. We prove that there are imaginary Killing spinors on simply connected
Lorentzian Einstein–Sasaki manifolds. In the Riemannian case, an odd-dimensional complete sim-
ply connected manifold (of dimensionn �= 7) is Einstein–Sasaki if and only if it admits a non-trivial
Killing spinor toλ = ± 1

2. The analogous result does not hold in the Lorentzian case. We give an
example of a non-Einstein Lorentzian manifold admitting an imaginary Killing spinor. A Lorentzian
manifold admitting a real Killing spinor is at least locally a codimension one warped product with
a special warping function. The fiber of the warped product is either a Riemannian manifold with a
real or imaginary Killing spinor or with a parallel spinor, or it again is a Lorentzian manifold with
a real Killing spinor. Conversely, all warped products of that form admit real Killing spinors.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we use the notationMn,k for a semi-Riemannian manifold of dimensionn
and indexk. The spinor bundle of a semi-Riemannian spin manifoldMn,k is denoted byS,
the non-degenerate scalar product on the fibers by〈·〉, the Clifford multiplication by· and
the spinor connection by∇. For the spin geometric notation in the Lorentzian case, see[4],
a comprehensive treatment of the Riemannian case can be found in[7,10].

A Killing spinor on a semi-Riemannian spin manifold(Mn,k, g) is a spinorϕ ∈ Γ (S),
solving

∇S
Xϕ = λX · ϕ
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for all X ∈ TM and aKilling numberλ ∈ C. The space of solutions of the so-calledKilling
equationfor λ ∈ C is denoted byKλ(M

n,k, g).
Killing spinors were first used in mathematical physics, e.g. in supergravity theories (see

[7] for detailed references on the physical literature). Later on, Killing spinors naturally
appeared in Riemannian geometry, when Friedrich proved that on a compact Riemannian
spin manifold(Mn, g) with positive scalar curvature, Killing spinors are exactly the eigen-
spinors of the Dirac operator realizing the case of equality in his lower eigenvalue estimate.
An interesting application of imaginary Killing spinors using methods related to Witten’s
proof of the positive mass theorem has been given in[2]. Recently, a correspondence be-
tween twistor and Killing spinors on semi-Riemannian spin manifolds and Killing vector
fields in the semi-Riemannian supergeometry canonically associated to a semi-Riemannian
spin manifold has been established (see[1]).

Theorem 1 (Killing spinors and curvature, see[7]). Let (Mn,k, g) be a connected semi-
Riemannian spin manifold andϕ ∈ Γ (S) a non-trivial Killing spinor toλ ∈ C. Thenϕ
has no zeroes and the(1,1)-Ricci tensor satisfiesRic(X) · ϕ = 4λ2(n − 1)X · ϕ for all
vectorsX ∈ TM. In particular, the scalar curvature is a constant related toλ by R =
4n(n− 1)λ2.

Non-trivial Killing spinors have no zeroes and the space of Killing spinors toλ is of
dimension less than or equal to 2[n/2]. The last formula implies that the Killing numberλ
of a non-trivial Killing spinorϕ has to be real or purely imaginary depending on the scalar
curvatureR. Accordingly, a Killing spinorϕ ∈ Γ (S) toλ ∈ C is called areal Killing spinor
if λ ∈ R\{0}, animaginary Killing spinorif λ ∈ iR\{0} and aparallel spinorif λ = 0. The
model spacesRn,k, Sn,k andHn,k of constant sectional curvature admit a space of parallel
spinors and Killing spinors to±1

2 or ±1
2i, respectively, which has the maximal dimension

2[n/2].
Furthermore, the theorem implies that a connected Riemannian manifold(Mn, g)

admitting a non-trivial solutionϕ ∈ Γ (S) of the Killing equation is an Einstein man-
ifold. This is not true in the case of pseudo-Riemannian manifolds (because the Clif-
ford product of an isotropic vector with a non-zero spinor can be zero). InSection 4,
we will see for example that there are non-Einstein Lorentzian spin manifolds admit-
ting parallel spinors and imaginary Killing spinors. However, it will be shown later on
that Lorentzian manifolds admitting real Killing spinors are Einstein spaces (see
Section 5).

Wang proved in[15] that a non-locally symmetric Riemannian manifold with a paral-
lel spinor has the reduced holonomy of a special type. This has been generalized to the
semi-Riemannian case by Baum and Kath (see[6]).

Theorem 2(Parallel spinors).Let (Mn, g) be a1-connected, non-locally symmetric, irre-
ducible semi-Riemannian spin manifold. Denote byK = dimK0(M, g) the dimension of
the space of parallel spinors. ThenK > 0 if and only if the holonomy of M is one of the
following:
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1. SU(m, k) ⊂ SO(2m,2k) andK = 2 (wheren = 2m is the dimension and2k the index),
2. SP(l, k) ⊂ SO(4l,4k) andK = l + k + 1 (wheren = 4l is the dimension and4k the

index),
3. G2 ⊂ SO(7) andK = 1,
4. G∗

2(2) ⊂ SO(7,4) andK = 1,

5. GC2 ⊂ SO(14,7) andK = 2,
6. Spin(7) ⊂ SO(8) andK = 1.
7. Spin0(7,4) ⊂ SO(8,4) andK = 1.
8. Spin(7)C ⊂ SO(16,8) andK = 1.

In the proof of this theorem it is shown that if the holonomy group of a 1-connected
semi-Riemannian manifold(Mn,k, g)— not necessarily being locally symmetric or irre-
ducible — is contained in one of these groups, the dimension of the space of Killing spinors
is at leastK.

In the Riemannian case it has been shown using warped product techniques that the
existence problem for Killing spinors on a Riemannian manifoldMn can be reduced to the
existence problem for parallel spinors on a Riemannian manifold either in one dimension
lower or in one dimension higher. We now briefly recall the relevant results, because they
will be useful inSection 5. The first is the following result obtained by Baum in 1988 (see
[7]).

Theorem 3 (Imaginary Killing spinors — Riemannian case).Let (Mn, g) be a complete
Riemannian spin manifold withR = −n(n − 1). If M admits a non-trivial imaginary
Killing spinor ϕ ∈ Γ (S) to λ = ±1

2i, then M is isometric to a warped productFn−1
f ×

R, where F is a complete Riemannian spin manifold admitting a parallel spinor and
f (t) = e±t .

In [3], warped product techniques were applied to get a geometrical description of Rie-
mannian manifolds with real Killing spinors. Bär proved that Killing spinors onM cor-
respond to parallel spinors on the coneM̂ overM. Using this idea and Wang’s result on
parallel spinors, he proved the following theorem.

Theorem 4(Real Killing spinors — Riemannian case).Let(Mn, g) be a1-connected com-
plete Riemannian spin manifold withR = n(n− 1). LetK± = dimK±(1/2)(M, g). If K+
or K− are non-zero, then one of the following holds:

1. M ∼= Sn andK± = dim∆n = 2[n/2],
2. n ≡ 1 mod 4,n ≥ 5 and M is an Einstein–Sasaki manifold andK± = 1,
3. n ≡ 3 mod 4,n ≥ 7 and

• M is Einstein–Sasaki manifold, but does not carry a Sasaki-3-structure andK− = 2
andK+ = 0, or

• M is a Sasaki-3-manifold andK− = 1
4(n+ 5) andK+ = 0,

4. n = 6 and M is a nearly Kähler non-Kähler manifold andK± = 1,
5. n = 7 and M admits a nice3-form(coming from aSpin(7)-holonomy of the cone over

M) andK− = 1 andK+ = 0.
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Conversely, if M is of one of the above types, then M admits Killing spinors andK±
coincide with the given values.

In this paper, we first describe the general relation between Killing spinors on a semi-
Riemannian manifoldF and Killing spinors on the warped productM = Ff ×I with an in-
tervalI . Using this, we are able to give the following generalization to the semi-Riemannian
context of the main idea behind Bär’s proof ofTheorem 4: real Killing spinors on a
semi-Riemannian manifoldMn,k correspond to parallel spinors on the coneM̂+1 = Mt ×
R

1,0
+ , while imaginary Killing spinors onM correspond to parallel spinors on the cone

M̂−1 = Mt × R
1,1
+ (with the metric−dt2 on the interval).

Using the remark followingTheorem 2, we can prove that if the holonomy of the cone
M̂±1 is in the list ofTheorem 2, there are Killing spinors onM (providedM is 1-connected).
This shows that a 1-connected Lorentzian Einstein–Sasaki manifold admits imaginary
Killing spinors. In contrast to the Riemannian case (Theorem 4), the converse is not true,
i.e. not all Lorentzian manifolds admitting imaginary Killing spinors are Einstein–Sasaki.
We give an example of a non-Einstein Lorentzian manifold admitting an imaginary Killing
spinor.

Lorentzian manifolds with real Killing spinors have a local warped product structure
(defined almost everywhere) given by the closed conformal vector field associated to the
spinor. In contrast to Baum’s theorem, the restriction of the real Killing spinor to the fiber
of the warped product, which is a codimension one submanifold, can be a real or imaginary
Killing spinor or a parallel spinor. (In the case of imaginary Killing spinors on Riemannian
manifolds, the restriction is always a parallel spinor.)

2. Killing spinors on warped products

In this section, we deal with the Killing equation on warped products of the form

(Mn,k, gM) = Fn−1,k̂
f × I = (F × I, f 2(t)gF + ε dt2),

where(F n−1,k̂, gF ) is an arbitrary semi-Riemannian manifold,ε ∈ {±1}, k = k̂− 1
2(ε−1)

and f : I → R+ is the so-called warping function. We denote byξ the global unit
vector fieldξ = ∂/∂t orthogonal to the fibers of the warped product. For every vector field
X ∈ X(F ) onF , defineX̃(p, t) = f−1(t)X(p) ∈ X(M).

Lemma 5. LetMn,k = Fn−1,k̂
f × I be a semi-Riemannian warped product of dimension

n ≥ 3. Then M is an Einstein space(resp. constant curvature space) if and only if the
warping function f satisfies the equationRF = ε(n − 1)(n − 2)((f ′)2 − ff′′) (or the
equivalent equationRM = −εn(n− 1)f ′′f−1) and F is an Einstein space(resp. constant
curvature space).

If n ≥ 4, then M is conformally flat if and only if F is of constant sectional curva-
ture.
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The proof is an application of the formulas for the curvature of warped products given
in [14, Chapter 7]. Using the corresponding formulas for the spinor calculus on warped
products (see 1.20–1.23 of[7]), we prove the main theorems of this section.

Theorem 6. Let M2m+2,k = F 2m+1,k̂
f × I be a warped product with metricgM =

f 2gF +ε dt2 and spin structure. Then M admits a non-trivial Killing spinorϕ to the Killing
numberλ ∈ {±1

2,0,±1
2i} if and only if the warping function satisfiesf ′′ = −4ελ2f

and F admits a non-trivial Killing spinor to+λF or −λF , whereλ2
F = λ2f 2 + ε 1

4(f
′)2.

Furthermore, we have

dimKλ(M, gM) = dimK+λF (F, gF )+ dimK−λF (F, gF ), for λF �= 0

dimKλ(M, gM) ≥ dimK0(F, gF ) for λF = 0.

Proof. We use the isomorphism̃: pr∗1SF ⊕ pr∗1ŜF → SM described in Chapter 1.2 of
[7] (whereŜF is just another realization of the spinor bundle as in Chapter 1.1 of[7]). Let
ϕ̃ = (ϕ1t + ϕ̂2t )̃ ∈ Γ (SM) be a spinor on a warped productM = Ff × I . It is a Killing
spinor to the Killing numberλ if and only if ∇ξ ϕ̃ = λξ · ϕ̃ and∇

X̃
ϕ̃ = λX̃ · ϕ̃ for any

X ∈ X(F ). Using the formulas̃X · ϕ̃ = (X ·ϕ1−X̂ · ϕ2)̃ andξ · ϕ̃ = τε i(−1)m(ϕ2+ ϕ̂1)̃ for
the Clifford product (whereτε = √

ε) and∇
X̃
ϕ̃ = (1/f )(∇Xϕ1+∇̂Xϕ2)̃−ε 1

2(f
′/f )X̃·ξ ·ϕ̃

and∇ξ ϕ̃ = ((∂/∂t)ϕ1t + ( ̂∂/∂t)ϕ2t )̃ for the spinor derivative one easily sees that this is
equivalent to the following equations fort-depending spinorsϕ1t , ϕ2t ∈ Γ (pr∗1SF ) onF

(definingκ = ε 1
2τε i(−1)m andω = τε iλ(−1)m to simplify the formulas)

∇Xϕ1t = λf (t)X · ϕ1t + κf ′(t)X · ϕ2t ,

∇Xϕ2t = −λf (t)X · ϕ2t − κf ′(t)X · ϕ1t for t ∈ I,X ∈ X(F ), (I)

∂

∂t
ϕ1t = ωϕ2t ,

∂

∂t
ϕ2t = ωϕ1t for any t ∈ R. (II)

If we have a solutionϕ1t0, ϕ2t0 of Eq. (I) for t0 ∈ I , i.e.

∇Xϕ1t0 = λf (t0)X · ϕ1t0 + κf ′(t0)X · ϕ2t0,

∇Xϕ2t0 = −λf (t0)X · ϕ2t0 − κf ′(t0)X · ϕ1t0 for all X ∈ X(F ), (I′)

then a solution ofEq. (II) is given by

ϕ1t = cosh(ω(t − t0))ϕ1t0 + sinh(ω(t − t0))ϕ2t0,

ϕ2t = sinh(ω(t − t0))ϕ1t0 + cosh(ω(t − t0))ϕ2t0. (*)

The proof of the theorem is cut into three parts. First we show that given a Killing spinor
onM, the warping function necessarily satisfiesf ′′ = −4ελ2f . Then we prove that iff
satisfies this differential equation, any solutionϕ1t0, ϕ2t0 of (I′) by (*) defines a solution of
(I) for all t ∈ I . The third part is to analyze the relation betweenEq. (I′) and the Killing
equation.
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First part: By (I) and Theorem 2 of[7] it is clear thatϕ1t andϕ2t are twistor spinors on
F . Thus, by 1.33 of[7], we have

D2ϕ1t = 1

4
RF n− 1

n− 2
ϕ1t .

On the other hand, a direct computation using(I) shows

D2ϕ1t = (n− 1)2(λ2f 2(t)− κ2(f ′)2(t))ϕ1t .

Supposingϕ1t to be non-trivial (otherwise proceeding similarly withϕ2t ), we get

RF = 4(n− 1)(n− 2)(λ2f 2(t)− κ2(f ′)2(t)). (1)

The equationRM = (1/f 2)RF − ε(n − 1)((n − 2)(f ′/f )2 + 2(f ′′/f )) together with
RM = 4n(n− 1)λ2 (seeTheorem 1) yieldsf ′′ = −4ελ2f .

Second part: If the warping function satisfiesf ′′ = −4ελ2f , one can extend a given
solution ofEq. (I′) for t0 by (*) to a solution of(I) for all t ∈ I . We will only prove that the
first part of(I) is satisfied. Therefore, we have to prove that the expression

∇Xϕ1t = cosh(ω(t − t0)){λf (t0)X · ϕ1t0 + κf ′(t0)X · ϕ2t0}
+sinh(ω(t − t0)){−λf (t0)X · ϕ2t0 − κf ′(t0)X · ϕ1t0}

is equal to

λf (t)X · { cosh(ω(t − t0))ϕ1t0 + sinh(ω(t − t0))ϕ2t0}
+κf ′(t)X · { sinh(ω(t − t0))ϕ1t0 + cosh(ω(t − t0))ϕ2t0}.

This can be done by comparing the coefficients ofX · ϕ1t0 andX · ϕ2t0 separately. Since all
coefficients satisfy the second-order differential equationx′′ = −ελ2x and corresponding
coefficients coincide fort0 as well as their first derivatives with respect tot , both expressions
are equal for allt ∈ I .

Thus, via(*) a solution ofEq. (I′) for t0 defines a solution of(I) for all t ∈ I and therefore
ϕ̃ = (ϕ1t + ϕ̂2t )̃ ∈ Γ (SM) solves the Killing equation onM.

Third part: We now give an interpretation ofEq. (I′) in terms of solutions of the Killing
equation. In the first part, we derivedRF = 4(n− 1)(n− 2)(λ2f 2(t)− κ2(f ′)2(t)). Thus,
the only possible Killing numbers onF are±λF , where

λ2
F = RF

4(n− 1)(n− 2)
= λ2f (t0)

2 + ε
1

4
(f ′)2(t0).

In the casef ′(t0) = 0 nothing is to be done (because then a solution of(I′) corresponds to
a pair of Killing spinors to±λ and we haveλF ∈ {±λ}). So in the following we suppose
f ′(t0) �= 0.

Case(RF �= 0 (or equivalentlyλF �= 0)). Given a solutionϕ1t0, ϕ2t0 of Eq. (I′)

ψ+ = ϕ1t0 −
λF − λf (t0)

κf ′(t0)
ϕ2t0, ψ− = ϕ1t0 −

−λF − λf (t0)

κf ′(t0)
ϕ2t0
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defines a pair of Killing spinorsψ± to ±λF . Conversely, starting with a pair of Killing
spinorsψ± to±λF , one gets a solution ofEq. (I′) by setting

ϕ1t0 = λF + λf (t0)

2λF
ψ+ + λF − λf (t0)

2λF
ψ−, ϕ2t0 = −κf ′(t0)

2λF
ψ+ + κf ′(t0)

2λF
ψ−.

Both maps are inverse to each other.

Case(RF = 0 (or equivalentlyλF = 0)). Given a solutionϕ1t0, ϕ2t0 of Eq. (I′),

ψ = ϕ1t0 +
λf (t0)

κf ′(t0)
ϕ2t0

defines a parallel spinorψ on F . If it is trivial, ψ = ϕ1t0 is already a parallel spinor.
Conversely, a parallel spinorψ onF defines a solution ofEq. (I′) by

ϕ1t0 = ψ, ϕ2t0 = − λf (t0)

κf ′(t0)
ψ.

Theorem 7. Let M2m+1,k = F 2m,k̂
f × I be a warped product with the metricgM =

f 2gF +ε dt2 and spin structure. ThenM admits a non-trivial Killing spinorϕ to the Killing
numberλ ∈ {±1

2,0,±1
2i} if and only if the warping function satisfiesf ′′ = −4ελ2f and

F admits a non-trivial Killing spinor to±λF , whereλ2
F = λ2f 2 + ε 1

4(f
′)2. Furthermore,

we have

dimKλ(M, gM) = dimK±λF (F, gF ) if λF �= 0.

In the caseλF = 0, we haveλ = ±κ(f ′(t0)/f (t0)) with κ = ε 1
2τε i(−1)m and

dimK+κ(f ′(t0)/f (t0))(M, gM) ≥ dimK−
0 (F, gF ),

dimK−κ(f ′(t0)/f (t0))(M, gM) ≥ dimK+
0 (F, gF ),

whereK±
0 (F, gF ) = {ϕ ∈ Γ (S±F ) : ∇ϕ = 0}.

Proof. The proof is analogous to that of the preceding theorem. �

An application: the cone over a manifold. Here, we slightly change the point of view
and consider the fiberF as the object of main interest. We therefore use another nota-
tion than before. Let(Mn,k, g) be a semi-Riemannian manifold and letε ∈ {±1}. The
warped productM̂ε = Mt × R+ with metricg

M̂
= t2gM + ε dt2 is called theε-coneover

the semi-Riemannian manifoldM. The following corollary is an easy consequence of the
preceding theorems.

Corollary 8. Let (Mn,k, gM) be a semi-Riemannian spin manifold and letτε = √
ε. Then

dimK±(τε/2)(M, gM) = dimK0(M̂
ε, g

M̂
) if n is even,

dimK+(τε/2)(M, gM)+ dimK−(τε/2)(M, gM) = dimK0(M̂
ε, g

M̂
) if n is odd.

Thus, real and imaginary Killing spinors correspond to parallel spinors on the cones over
the manifold. This is a generalization of the basic idea behind the proof ofTheorem 4. Since
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the 1-cone overSn,k and the−1-cone overHn,k are isometric to open subsets ofRn+1,k,
resp.,Rn+1,k+1, the existence of real, resp., imaginary Killing spinors on the non-flat model
spaces follows from the existence of parallel spinors onRn+1,k, resp.,Rn+1,k+1.

3. Imaginary Killing spinors on Lorentzian Einstein–Sasaki manifolds

Friedrich and Kath found that 1-connected Einstein–Sasaki manifolds admit at least
two linearly independent Killing spinors (see[7]). Here, we generalize this result to the
Lorentzian case. Another approach for doing this can be found in[11]. In the Riemannian
case,Theorem 4asserts that — except in dimension 7 — all odd-dimensional complete
1-connected manifolds admitting real Killing spinors are Einstein–Sasaki (up to rescaling
of the metric). This is not true for imaginary Killing spinors on Lorentzian manifolds.

3.1. Pseudo-Sasaki manifolds

Definition 9. A semi-Riemannian manifold(M2m+1,k, g) is calledpseudo-Sasaki manifold
if there is a vector fieldξ ∈ X(M) which defines apseudo-Sasaki structure, i.e. which
satisfies the following:

1. ξ is a Killing vector field of lengthε = g(ξ, ξ) = (−1)k,
2. the endomorphismφ = −∇ξ satisfiesφ2(X) = −X+εg(X, ξ)ξ for all vectorsX ∈ TM,

and
3. (∇Xφ)(Y ) = εg(X, Y )ξ − εg(Y, ξ)X for anyX, Y ∈ TM.

A Riemannian manifold is Sasaki if and only if the Riemannian cone over the manifold
is Kähler (see[3]). This can be generalized as follows.

Lemma 10(Cone over pseudo-Sasaki manifold).Let(M2m+1,k, gM)be a semi-Riemannian
manifold andε = (−1)k. Denote byM̂ε = Mt × R+ theε-cone overM (with the metric
g
M̂

= t2gM + ε dt2). Then there is a one–one-correspondence between:

1. Pseudo-Sasaki structuresξ ∈ X(M) with ε = g(ξ, ξ) = (−1)k on (M, gM).
2. Pseudo-Kähler structureJ ∈ Γ (EndT M̂) on M̂, i.e. endomorphisms satisfying

J 2 = −Id, J ∗g
M̂

= g
M̂
, ∇J = 0.

Proof. Givenξ , the almost complex structureJ is defined byJ X̃ = −φ̃(X) for X ∈ ξ⊥,
J ξ̃ = −(∂/∂t) andJ (∂/∂t) = ξ̃ . Conversely, givenJ , defineξ = J (∂/∂t) on M =
M × {1} ⊂ M̃. �

Lemma 5implies thatM is Einstein if and only ifM̂ is Ricci-flat and thatM is of constant
sectional curvature if and only if̂M is flat. A simple computation shows that ifM is Einstein
or of constant sectional curvature, thenR = ε(2m+ 1)2m.

Theorem 11(Killing spinors on Einstein pseudo-Sasaki manifolds).Let (M2m+1,k, g, ξ)

be a1-connected Einstein pseudo-Sasaki spin manifold(withm ≥ 2),ε = g(ξ, ξ) = (−1)k.
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Denote byK± = dimK±(τε/2)(M, g). Then, the minimal values forK± are given by the
following table:

ε = 1 ε = −1

m odd
K+ 0 2
K− 2 0
m even
K+ 1 1
K− 1 1

Proof. We have seen that a pseudo-Sasaki structure corresponds to a unique pseudo-Kähler
structure on the cone over the manifold. In the case of Einstein pseudo-Sasaki manifolds, this
pseudo-Kähler structure is Ricci-flat. A Ricci-flat pseudo-Kähler structure on a 1-connected
manifold corresponds to a unique reduction of the Repère bundle and the Levi-Civita con-
nection to SU(m, k) (see [12, Theorem 4.6 of Chapter 10] or [8, Theorem 10.29]). Then the
holonomy of the cone is a subgroup of SU(m, k) and we can apply the remark following
Theorem 2andCorollary 8. �

3.2. Lorentzian Einstein–Sasaki manifolds

The next lemma shows that any 1-connected Lorentzian Einstein–Sasaki manifold is spin.
The preceding theorem therefore implies that any such manifold admits imaginary Killing
spinors.

Lemma 12. Any1-connected Lorentzian Einstein–Sasaki manifold(M2m+1,1, g, ξ) is spin.

Proof. We have seen that a Lorentzian–Sasaki structure onM corresponds to a pseudo-
Kähler structure on the conêM−1. SinceM is Einstein,M̂−1 is Ricci-flat. Now, the same
argument as used in the proof ofTheorem 11implies that the holonomy of̂M−1 is contained
in SU(m+ 1,1).

Since there are the two vector fields∂/∂t andξ̃ = J (∂/∂t) onM̂−1, we not only have a
reduction to SU(m+ 1,1), but also to SU(m). Now in the commutative diagram of group
monomorphisms

SU(m) → SO(2m)

↓ ↓
SU(m+ 1,1) → SO0(2m+ 2,2),

the upper arrow factor over Spin(2m) (see [10, Chapter 1.6]). Therefore, the conêM−1

admits a Spin(2m)- and by extension a Spin0(2m + 2,2k)-structure. But a Spin structure
on the coneM̂−1 defines a spin structure onM. �

As we already pointed out, not all Lorentzian manifolds admitting imaginary Killing
spinors are Einstein–Sasaki. The following theorem gives a spinorial characterization of
1-connected Lorentzian Einstein–Sasaki manifolds. A proof can be found in[9].
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Theorem 13. Let(M2m+1,1, g, ξ) be a1-connected Lorentzian Einstein–Sasaki spin man-
ifold. For any spinorϕ ∈ Γ (S), denote byVϕ the associated vector field ofϕ, i.e. the vector
field dual to the1-formωϕ(X) = −〈ϕ,X · ϕ〉. If m is even, then there is a Killing spinor
ϕ ∈ Γ (S) to eachλ ∈ {±1

2i} such thatVϕ = ξ and satisfiesVϕ · ϕ = −ϕ. If m is odd, then
there are two Killing spinorsϕ1, ϕ2 ∈ Γ (S) to 1

2i such thatVϕ1 = Vϕ2 = ξ andξ ·ϕ1 = ϕ1
andξ · ϕ2 = −ϕ2.

Conversely, if a Lorentzian spin manifold(M2m+1,1, g) admits a Killing spinorϕ ∈ Γ (S)

to λ ∈ {±1
2i} such thatg(Vϕ, Vϕ) = −1 andVϕ · ϕ = ±ϕ, thenM is Einstein andξ = Vϕ

defines a Lorentzian–Sasaki structure.

3.3. Examples of Lorentzian Einstein–Sasaki manifolds

Examples of Lorentzian Einstein–Sasaki manifolds can be obtained using a method for
the construction of Riemannian Einstein–Sasaki manifolds admitting real Killing spinors
(see [7, Chapter 4.2, Example 1]). Starting with a Kähler–Einstein manifoldX2m of posi-
tive scalar curvature, a Riemannian Einstein–Sasaki manifold can be obtained by taking a
suitable metric on a specialS1-bundle overX2m. In contrast to the Riemannian case one
has to start with Kähler–Einstein manifolds of negative scalar curvature in order to get
Lorentzian–Sasaki manifolds admitting imaginary Killing spinors.

Lemma 14 (S1-bundle and its metric).Let (X2m, gX, J ) be a Kähler–Einstein manifold
with RX = −4m(m + 1). LetM2m+1 π→X2m be anS1-bundle overX2m with first Chern
class

c1(M
2m+1 π→X2m) = 1

A
c1(X

2m) ∈ H 2(X2m,Z),

whereA ∈ N is maximal such that(1/A)c1(X
2m) is integral. Taking a connectionη′ whose

curvature is related to the Kähler formΩ = gX(·, J ·) ofX2m bydη′ = −(2(m+1)/A)iΩ,
an Einstein metric onM can be defined by

gM = π∗gX + ε
A2

(m+ 1)2
η′ ⊗ η′.

Furthermore, there is a canonical Lorentzian–Sasaki structure defined by the Killing vector
field

ξ =
(
m+ 1

A
i

)
˜

of lengthgM(ξ, ξ) = ε. (Here˜ denotes the fundamental vector field with respect to the
S1-action of the principal fiber bundle.)

The proof of this lemma is analogous to Example 1 in Chapter 4.2 of[7].
Now that we have a construction principle for Lorentzian Einstein–Sasaki manifolds as

S1-bundles over Kähler–Einstein manifolds of negative scalar curvature, we want to apply
Theorem 11. In order to do that, we only have to assure that the Einstein–Sasaki manifold
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M is 1-connected, i.e. if the constructed manifold is not 1-connected, we have to consider
its universal covering. ByLemma 12andTheorem 11, this 1-connected manifold admits
imaginary Killing spinors.

In order to construct compact 1-connected Lorentzian Einstein–Sasaki manifolds, we
need the following lemma.

Lemma 15. Let (X2m, J, gX) be a compact and1-connected Kähler–Einstein manifold of
scalar curvatureRX = −4m(m+1). LetM2m+1 π→X2m be the Lorentzian Einstein–Sasaki
manifold obtained asS1-bundle overX2m as in Lemma14.ThenM is a compact1-connected
spin manifold.

Proof. M is compact, because it is a principal fiber bundle with compact structure group
S1 over a compact baseX. To prove thatM again is 1-connected, one can proceed as in [7,
Chapter 4.2, Example 1]. NowM is spin byLemma 12. �

The Aubin–Calabi–Yau theorem (cf. [8, 11.17]) asserts that any compact complex mani-
fold (X2m, J ) of negative first Chern class admits a unique (up to scaling) Kähler–Einstein
metric of negative scalar curvature. One class of 1-connected compact complex manifolds of
negative first Chern class is given in [8, 11.10]. Using this class andLemmas 14 and 15, one
can construct 1-connected compact Lorentzian Einstein–Sasaki manifolds with imaginary
Killing spinors.

4. A non-Einstein Lorentzian manifold with imaginary Killing spinors

Here, we give an example of a non-Einstein Lorentzian manifold admitting imaginary
Killing spinors. This is interesting because in the Riemannian case all manifolds admitting
Killing spinors are Einstein. In the Lorentzian case, only the manifolds admitting real Killing
spinors have to be Einstein (seeSection 5).

Baum proved in[5] that in dimensionn ≥ 3 the 1-connected undecomposable solvable
Lorentzian symmetric spaces, which are all of the form(Rn, gλ), wheregλ = 2 ds dt +∑n−2

j=1λjx
2
j ds2 + ∑n−2

j=1 dx2
j andλ = (λ1, . . . , λn−2) ∈ (R\{0})n−2, admit a space of

parallel spinors of dimension12 · 2[n/2]. The vector fieldV = ∂/∂t is isotropic and parallel.

The Ricci tensor satisfies Ric(X) = (−∑n−2
j=1λj )gλ(X, V )V . Such spaces are Einstein if

and only if
∑n−2

j=1λj = 0 and conformally flat if and only ifλ = (λ, . . . , λ) for λ ∈ R\{0}.
Let (F, gF ) = (Rn−1, gλ) be such a Lorentzian symmetric space withλ ∈ (R\{0})n−3

such that
∑n−3

j λj �= 0. ThenF is non-Einstein and admits parallel spinors.Lemma 5
implies thatM = Fe×R is non-Einstein non-conformally flat. ButTheorems 6 and 7show
thatM admits imaginary Killing spinors. Thus, we have proved the following theorem.

Theorem 16. In dimensionsn ≥ 4, there are non-Einstein non-conformally flat Lorentzian
spin manifolds(Mn,1, g) admitting imaginary Killing spinors.
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5. Real Killing spinors on Lorentzian manifolds

This section is devoted to real Killing spinors on Lorentzian manifolds. Given a Killing
spinorϕ, its associated vector fieldVϕ is closed and conformal and it is orthogonal to the
foliation into the level surfaces of the length functionuϕ = 〈ϕ, ϕ〉. This gives rise to a
local warped product structure defined outside the hypersurfaces where the vector field is
isotropic. We examine more closely, how far this warped product structure can be extended
in the case of complete manifolds. At the end, we give a list of all complete 1-connected
Lorentzian manifolds admitting a real Killing spinor with first integralQϕ < 0. This is
done using the classification results for complete 1-connected Riemannian manifolds with
real Killing spinors.

5.1. Local warped product structure

Let (Mn,1, g) be a connected Lorentzian spin manifold. Letϕ ∈ Γ (S) be a real Killing
spinor to Killing numberλ ∈ R\{0}. The associated vector fieldVϕ of the spinorϕ ∈ Γ (S)

is defined to be the vector field dual to the 1-formωϕ(X) = −〈ϕ,X ·ϕ〉. In [4], it is proved
that on a Lorentzian spin manifoldMn,1, the vector fieldVϕ has the same zeroes as the
spinorϕ ∈ Γ (S). So, the associated vector fieldVϕ of a non-trivial Killing spinorϕ has no
zeroes at all.

Lemma 17. The associated vector fieldVϕ of a real Killing spinorϕ ∈ Γ (S) to the Killing
numberλ ∈ R\{0} on a Lorentzian spin manifold(Mn,1, g) satisfies

∇XVϕ = 2λuX,

whereu = 〈ϕ, ϕ〉 is the length function of the Killing spinor. ThusVϕ is a closed conformal
vector field. Furthermore, for the length functionu, we have

grad(u) = −2λVϕ.

Proof. Let s1, . . . , sn be a local orthonormal frame, which is parallel inp ∈ M. In p, we
have

∇XVϕ =−
∑
i

εi(〈si · ∇Xϕ, ϕ〉+〈si · ϕ,∇Xϕ〉)si=−λ
∑
i

εi〈(si ·X+X · si) · ϕ, ϕ〉si

= 2λ
∑
i

εi〈ϕ, ϕ〉g(X, si)si = 2λuX.

The second formula follows fromX(u) = 〈∇Xϕ, ϕ〉 + 〈ϕ,∇Xϕ〉 = −2λωϕ(X). �

The length functionu of a non-trivial real Killing spinorϕ is regular, because its gradient
is up to a constant equal to the vector fieldVϕ , which has no zeros. Thus, the real Killing
spinorϕ defines a foliation of the manifoldMn,1. We now derive a local description ofM
arising from that foliation. It follows basically from the existence of the conformal gradient
vector field. Similar techniques are used in[13].
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Corollary 18. Let ϕ ∈ Γ (S) be a real Killing spinor on a connected Lorentzian spin
manifold, denote byu = 〈ϕ, ϕ〉 its length function and byv = g(Vϕ, Vϕ) the length
function of its associated vector field. ThenQϕ = u2 + v is constant on M.

Proof. The preceding lemma yieldsX(Qϕ)=2ug(grad(u),X)+2g(∇XVϕ, Vϕ)=0. �

Thus, the lengthv ofVϕ is constant along the level surfaces ofu. Furthermore, the gradient
of u— being up to a constant equal to the conformal vector fieldVϕ — gets only isotropic
on the level surfacesu = ±√

Qϕ , i.e.v−1(0) = u−1(±√
Qϕ).

By rescaling, we can assume that the Killing numberλ is equal to±1
2. This simplifies

Lemma 17to

∇XVϕ = ±uX, grad(u) = ∓Vϕ. (2)

The normalized gradient fieldξ is given by

ξ = grad(u)√
εg(grad(u),grad(u))

= ∓ Vϕ√
εv

is defined on the open setsV± = {p ∈ M : v(p) ≷ 0} = {p ∈ M : Qϕ ≷ u2(p)}. In the
following, defineε : V+ ∪ V− → {±1}, p  → sgn(v(p)) to be the locally constant sign of
v. The normalized gradient fieldξ is lightlike onV− and spacelike onV+. The union ofV+
andV− is dense, because its complement consists of hypersurfaces.

By Corollary 18, there are three possibilities depending on the first integralQϕ :

• Qϕ < 0 andM = V−,
• Qϕ = 0 andM = V−∪̇v−1(0) or
• Qϕ > 0 andM = V−∪̇v−1(0)∪̇V+.

UsingEq. (2), one can see thatξ satisfies

ξ(u) = ε
√
εv, ∇Xξ = − u√

εv
projξ⊥(X). (3)

The last equation implies thatξ is closed (i.e. rot(V ) = g(∇ · ξ, ·)− g(·,∇ · ξ) = 0) and
geodesic (i.e.∇ξ ξ = 0). Consequently, the following lemma applies to the integral curves
of ξ .

Lemma 19. Let (Mn,1, g) be a Lorentzian spin manifold and letu = 〈ϕ, ϕ〉 be the length
function of a real Killing spinorϕ ∈ Γ (S) to ±1

2. Let γ be an arbitrary geodesic having
the lengthε = g(γ ′(0), γ ′(0)) ∈ {−1,0,1}. For the length functionu(t) = u(γ (t)) of the
spinorϕ alongγ , the following holds:

u(t) =


u(0) cos(t)+ u′(0) sin(t), ε = 1,

u(0)+ u′(0)t, ε = 0,

u(0) cosh(t)+ u′(0) sinh(t), ε = −1.



298 C. Bohle / Journal of Geometry and Physics 45 (2003) 285–308

Proof. Eq. (2)implies thatu alongγ has to satisfy the differential equation

u′′(t) = γ ′(t)g(grad(u), γ ′(t)) = g(∇γ ′(t) grad(u), γ ′(t))
= −g(γ ′(t), γ ′(t))u(t) = −εu(t). �

Lemma 20. Letξ be the normalized gradient field of the length functionu of a real Killing
spinorϕ to±1

2. LetΦt be the local flow ofξ . Then we havedΦt(ξ) = ξ anddΦt(ξ
⊥) = ξ⊥

for anyt where these expressions are defined. Furthermore, for anyX, Y ∈ ξ⊥p , we have

Φ∗
t g(X, Y ) = e−2

∫ t
0(u/

√
εv)(Φs(p))ds · gp(X, Y ) =

(
u′(t)
u′(0)

)2

gp(X, Y ).

Proof. As Φt is the local flow ofξ , we have dΦt(ξ) = ξ . So letX, Y ∈ TpM be arbitrary
tangent vectors. Definea(t) = Φ∗

t g(X, Y ). By Eq. (3), the first derivative ofa satisfies

a′(t) = d

ds |s=0
(Φ∗

s g)Φt (p)(dΦt(X),dΦt(Y )) = (£ξ g)Φt (p)(dΦt(X),dΦt(Y ))

= − 2u√
εv

(Φt (p))gΦt (p)(projξ⊥(dΦt(X)),projξ⊥(dΦt(Y ))).

In the caseX = ξ or Y = ξ , we havea′(t) = 0 and dΦt(ξ
⊥) = ξ⊥ holds. In the

caseX, Y ∈ ξ⊥, we therefore get projξ⊥(dΦt(X)) = dΦt(X). So,a(t) satisfies the linear
differential equation

a′(t) = − 2u√
εv

(Φt (p))a(t)

being solved byΦ∗
t g(X, Y ) = e−2

∫ t
0(u/

√
εv)(Φs(p))ds · gp(X, Y ). Using Eq. (3) and

Lemma 19, we haveu′ = ε
√
εv andu′′ = −εu. So, we get

Φ∗
t g(X, Y ) = e2

∫ t
0(u

′′/u′)(Φs(p))ds · gp(X, Y ) =
(
u′(t)
u′(0)

)2

gp(X, Y ). �

By definition, the level surfaces ofu are integral manifolds of the geometric distribution
given byξ⊥. The preceding lemma implies thatΦt , whenever defined on a connected piece
of level surface, maps that piece of level surface on another connected piece of level surface.
Thus, on the dense setV+ ∪ V−, we have the following local form ofM.

Lemma 21. Let(Mn,1, g) be a connected Lorentzian spin manifold admitting a non-trivial
real Killing spinorϕ and letu = 〈ϕ, ϕ〉. Letp ∈ Mn,1 such thatv(p) �= 0. Then there is a
connected open neighborhoodVp ⊆ Vε (ε = sgn(v(p))) isometric to the warped product
(F n−1×(−δ, δ), f 2(t)g|F +ε dt2),whereFn−1 = V∩u−1(u(p))with the warping function
f (t) = u′(t)/u′(0), whereu(t) = u(Φt (p)).

Proof. From the theory of differential equations we know that there is an open connected
setF ⊆ u−1(u(p)) and aδ > 0 such thatΨ : F × (−δ, δ) → M, (p′, t)  → Φt(p

′) is
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a diffeomorphism on its image. DefineV to be the image ofΨ . Now u(t) = u(Φt (p
′))

is independent on the choice ofp′ ∈ F , becauseΦt maps on connected components of
level surfaces. From the preceding lemma, we know that the pullback of the metric onM

via Ψ has the formf 2(t)g|F + ε dt2 with the warping functionf (t) = u′(t)/u′(0), where
u(t) = u(Φt (p)). �

This local result can be globalized by the following observation. Every time we can
chooseF and δ in the way that the mapΨ as in the preceding proof is defined,Ψ is
automatically a diffeomorphism on its image, because it is an injective local diffeomor-
phism (Φt is a diffeomorphism andu is strictly monotonous along integral curves ofξ by
Eq. (3)).

Theorem 22 (Local warped product structure).Let Mn,1 be a Lorentzian spin manifold
admitting a non-trivial real Killing spinorϕ to ±1

2, let p ∈ V± andε = sgn(v(p)). Then
there is a connected open subsetF of the level surface ofu throughp and a warping function
f such that a neighborhoodVp of p in M is isometric toFf × I . Furthermore, one of the
following holds:

• Qϕ < 0 andp ∈ V− = M. ThenF is a Riemannian manifold of constant positive scalar
curvature carrying a non-trivial real Killing spinor andf (t) = c cosh(t + d).

• Qϕ = 0andp ∈ V− = M\u−1(0). ThenF is a Riemannian manifold of scalar curvature
zero carrying a non-trivial parallel spinor andf (t) = c e±t .

• Qϕ > 0 andp ∈ V−. ThenF is a Riemannian manifold of constant negative scalar
curvature carrying a non-trivial imaginary Killing spinor andf (t) = c sinh(t + d).

• Qϕ > 0 and p ∈ V+. ThenF is a Lorentzian manifold of constant positive scalar
curvature carrying a non-trivial real Killing spinor.

Conversely, using the theorems ofSection 2, one can see that any warped productFf ×I

with F andf of the types listed above admits a non-trivial real Killing spinor.

Proof. The preceding lemma already assures that there is a neighborhoodVp ofp isometric
to such a warped product with warping functionf (t) = u′(t)/u′(0) (u being the spinor
length along the integral curve ofξ passing throughp). Theorems 6 and 7yield that the
restriction ofϕ to F again induces a non-trivial solution of the Killing equation to Killing
number±λF .

Furthermore, both theorems together withTheorem 1imply

RF

(n− 1)(n− 2)
= 4λ2

F = f 2 + ε(f ′)2. (4)

Using the definition off andu′(t) = ε
√
εv(t) (see(3)), we get

(f ′(0))2 =
(
u′′(0)
u′(0)

)2

=
(−εu(0)

u′(0)

)2

= u2(0)

εv(0)
= ε

u2(0)

Qϕ − u2(0)
. (5)
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Plugging this andf (0) = 1 intoEq. (4)gives

RF

(n− 1)(n− 2)
= (f (0))2 + ε(f ′(0))2 = Qϕ

Qϕ − u2(0)
. (6)

Nowv(p) = Qϕ−u2(0)gives the link betweenRF andQϕ . In the case ofp ∈ V−, the warp-
ing function of the local warped product structure isf (t) = cosh(t)+ (u(0)/u′(0)) sinh(t).
Now p ∈ V− impliesε = g(ξ, ξ) = −1 onVp. ThusEq. (5)yields(

u(0)

u′(0)

)2

= u2(0)

u2(0)−Qϕ

,

and thereforeQϕ < 0 if and only if|u(0)/u′(0)| < 1,Qϕ = 0 if and only if|u(0)/u′(0)| = 1
and finallyQϕ > 0 if |u(0)/u′(0)| > 1. This asserts thatf is of the given forms. �

An important application of the preceding theorem is the following.

Theorem 23. Let Mn,1 be a connected Lorentzian spin manifold with non-trivial real
Killing spinor ϕ ∈ Γ (S). ThenM is an Einstein space.

If n ≤ 4, thenM is of constant sectional curvature.

Proof. The theorem holds forn = 2, since a two-dimensional manifold is Einstein if
and only if it is of constant scalar curvature. We prove the statement by induction over
the dimension ofM. Assume the theorem to be true in dimensionn − 1 and letM be of
dimensionn. By rescaling, we can assume the Killing number to beλ = ±1

2. Theorem 22
implies that a neighborhoodVp of every pointp ∈ V± is isometric to a warped product
Fn−1

f × (−δ, δ) and that onF again exists a non-trivial solution of the Killing equation.
In the case of LorentzianF , this solution again is a real Killing spinor and by induction
F is an Einstein space. IfF is a Riemannian submanifold, thenF is Einstein, because
every Riemannian spin manifold admitting non-trivial solutions of the Killing equation is
Einstein. Nowf ′′ = −εf and(4) implies

RF = ε(n− 1)(n− 2)((f ′)2 − ff′′), (*)

andVp is Einstein byLemma 5. Hence,M is Einstein in a neighborhood of every point
p ∈ V±. By continuity and the fact thatV+ ∪ V− is dense,M is Einstein space.

The statement forn ≤ 4 is evident in the case ofn ∈ {2,3}, as in those dimensions being
Einstein and being of constant sectional curvature is equivalent. Forn = 4, it is a direct
consequence ofLemma 5andEq. (*) (again using the fact that in dimension 3 Einstein and
constant sectional curvature is the same). �

5.2. Completeness of warped products

If F is a Riemannian manifold andε = 1, then for an arbitrary warping functionf , one
knows thatM = Ff × I is geodesically complete if and only ifF is geodesically complete
andI = R. This can be proved using metric completeness arguments, which are failing in
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the case of pseudo-Riemannian manifolds (see [14, Chapter 7, Lemma 40]). A proof of the
following lemma can be found in [14, Chapter 7, Proposition 38].

Lemma 24 (Geodesics on warped products).Let M = Ff × I be a semi-Riemannian
warped product with metricgM = f 2(t)gF + ε dt2, ξ = ∂/∂t .

1. Then a curveγ = (β, α) in M is geodesic if and only if, we have

α̈(s) = εg(β ′(s), β ′(s))f (α(s))f ′(α(s))ξ in I,

β̈(s) = −2

f (α(s))

d(f ◦ α)
ds

β ′(s) in F (7)

(̈ denoting the second covariant derivative along curves in the factors of the product).
2. Furthermore, the projection of a geodesic inM on a fiberF × {t} is a pregeodesic.

Now, we apply this lemma to those Lorentzian warped products which (byTheorem 22)
are models for all spaces admitting real Killing spinors.

Corollary 25. LetM = Ff × I satisfy one of the following:

1. F is Riemannian manifold, I = R, f (t) = cosh(t) andε = −1;
2. F is Riemannian manifold, I = R, f (t) = et andε = −1;
3. F is Riemannian manifold, I = R+, f (t) = c sinh(t) andε = −1;
4. F is Lorentzian manifold, I = (−(π/2), π/2), f (t) = cos(t) andε = 1.

If F is geodesically complete, thenM is geodesically complete in the case of(1) and not
geodesically complete in the case of(2)–(4).

5.3. Global structure of complete Lorentzian manifolds admitting real
Killing spinors

In this section, we examine the global structure of the foliation defined by the length
function u of a real Killing spinorϕ ∈ Γ (S) to λ = ±1

2 on a connected geodesically
complete Lorentzian spin manifoldMn,1. As above, denote byξ the normalized gradient
field of the length functionu of ϕ defined onV±.

Lemma 26. LetMn,1 be geodesically complete and letϕ be a real Killing spinor, then the
length functionu : M → R of ϕ is surjective. The first integralQϕ is the maximal value of
the associated vector field’s length functionv (attained on the level surfaceu−1(0)).

Proof. Letp ∈ M arbitrary. Then we find an isotropic vectorX ∈ TpM such that we have
g(X, Vϕ(p)) �= 0. Letγ be the geodesic defined byγ ′(0) = X. Then along the geodesic
γ , u is of the formu(t) = u(p)∓ g(X, Vϕ(p))t given inLemma 19because byEq. (2), we
haveu′(0) = g(grad(u)p,X) = ∓g(Vϕ(p),X). This yields surjectivity ofu. The second
part is a consequence ofQϕ = u2 + v. �
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Thus, we have for a geodesically complete manifoldMn,1 with real Killing spinorϕ ∈
Γ (S):

• Qϕ < 0 ⇔ M = V−,
• Qϕ = 0 ⇔ M = V−∪̇v−1(0) (both sets being non-empty),
• Qϕ > 0 ⇔ M = V−∪̇v−1(0)∪̇V+ (none of the sets being empty),

andv−1(0) = u−1(±√
Qϕ).

Theorem 27(Real Killing spinors withQϕ < 0). Let ϕ ∈ Γ (S) be a real Killing spinor
to λ = ±1

2 on a geodesically complete manifoldMn,1. If Qϕ < 0, then

M ∼= F cosh × R1,1,

whereF = u−1(0) is a complete connected Riemannian spin manifold with real Killing
spinors. Furthermore,

dimK±(1/2)(M, gM) = dimK+(1/2)(F, gF )+ dimK−(1/2)(F, gF ) if n is even,

dimK±(1/2)(M, gM) = dimK+(1/2)(F, gF ) = dimK−(1/2)(F, gF ) if n is odd.

Proof. In the caseQϕ < 0, the vector fieldξ is a globally defined geodesic vector field.
So its flow exists globally. The map

Ψ : F × R → M, (x, t)  → Φt(x)

defined inLemma 21is injective for any connected componentF of a level surface of
u, becauseu is strictly decreasing along integral curves ofξ (Eq. (3)). As Ψ is a local
diffeomorphism, it is a diffeomorphism on its open image.

For any two connected componentsF andF ′ of level surfaces ofu, the images of the
corresponding diffeomorphismsΨF andΨF ′ are equal or disjoint. So by connectivity ofM,
for any suchF , the image ofΨF isM. Hence, the level surfaces ofu are connected andM
is globally a warped product of the form ofLemma 21.

If we takeF = u−1(0), thenu(t) = u′(0) sinh(t). So the warping function is of the
form f (t) = u′(t)/u′(0) = cosh(t). F is a totally geodesic submanifold, because the two
fundamental forms ofF satisfiesIF (X, Y ) = −(u(0)/

√
εv(0))g(X, Y )ξ = 0 (that can be

seen using the formula∇M

X̃
Ỹ = (1/f )∇̃F

XY − ε(f ′/f )gF (X, Y )ξ , cf. [14]). So geodesic
completeness ofM and the fact thatF is closed inM, implies completeness ofF .

The spin geometric part of the statement is a direct consequence ofTheorems 6
and 7. �

Theorem 28(Real Killing spinors withQϕ = 0). Let Mn,1 be a geodesically complete
connected Lorentzian spin manifold with real Killing spinorϕ ∈ Γ (S) to λ = ±1

2. If

Qϕ = 0, then the open setsV≷− = {p : u(p) ≷ 0} ⊆ V− are isometric to the warped
products

F e∓t × R1,1,
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whereF = u−1(±1) is a complete Riemannian manifold with parallel spinors. Further-
more,

dimK±(1/2)(V
≷
− , gM) ≥ dimK0(F, gF ) if n is even,

and

dimK∓κ(V
≷
− , gM) ≥ dimK−

0 (F, gF ),

dimK±κ(V
≷
− , gM) ≥ dimK+

0 (F, gF ) if n is odd (where κ = 1
2(−1)m).

Proof. Let p ∈ V≷− = {p : u(p) ≷ 0} ⊆ V−. Denoteγ the geodesic withγ ′(0) = ξ(p).
By Eq. (6)andu′(0) < 0, we haveu(0)/u′(0) = ∓1, so the length functionu along with
γ satisfies

u(t) = u(0) cosh(t)+ u′(0) sinh(t) = u(0)e∓t .

Hence, for anyp ∈ V≷− , the geodesicγ stays inV≷− and runs through all level surfaces of

u lying in V≷− .
If we takeF = u−1(±1), the map

Ψ : F × R → V
≷
− , (x, t)  → Φt(x)

defined inLemma 21is a diffeomorphism. It is injective, becauseu is strictly decreasing

along geodesic (Eq. (3)), and it is surjective, because for any point inV≷− , the geodesicγ ,

which is the integral curve ofξ runs through all level surfaces ofu lying in V≷− .

Therefore, byLemma 21the setsV≷− are isomorphic to warped products, the warping
function beingf (t) = e∓t by the above formula foru along integral curves ofξ .

The spin geometric part of the statement follows fromTheorems 6 and 7. Showing that
F is complete is a little bit more technical as in the preceding case. We prove that there is
anε > 0 such that for anyp ∈ F and anyX ∈ TpF of length 1, the geodesic inF being
tangent toX in p exists at least on the interval(−ε, ε). As ε is independent ofp andX,
every geodesic inF can be extended toR.

Let γ be the geodesic inM with γ ′(0) = X ∈ TpF . Becauseγ is spacelike and has
length 1, byLemma 19we haveu(γ (s)) = ± cos(s). Thus, fors ∈ (−(π/2), π/2), γ stays

in V≷− . There we haveγ = (β, α) ∈ F × R. By Lemma 24, β is pregeodesic inF with
β ′(0) = X. Parameterizingβ on arc-length yields a geodesicβ̃. What we have to show is
that the arc-length ofβ in both directions from 0 is at leastε, whereε is independent ofp
andX. ThenF is geodesically complete, because every geodesic can be extended.

Becauseu is constant on the fibers of the warped product we haveu(γ (s)) = u((p, α(s)))

which is equivalent to± cos(s) = ±e∓α(s). Thus, independent ofp andX, we have that
α(s) = ∓ ln(cos(s)). By Lemma 24, l(s) = g(β ′(s), β ′(s)) satisfies

l′(s) = 2gF (β̈(s), β
′(s)) = − 4

f ◦ α
d(f ◦ α)

ds
l(s),
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and independent ofp andX

l(s) = 1

f (α(s))4
= 1

e∓(∓ ln(cos(s)))
= 1

cos4(s)
.

If one takesε = ∫ π/4
0 (1/ cos2(s))ds andL(s) = ∫ s

0

√
l(τ )dτ = ∫ s

0 (1/ cos2(τ ))dτ , so

β̃ : (−ε, ε)
L−1

→
(
−π

4
,
π

4

)
β→F

is a geodesic. �

Real Killing spinors withQϕ > 0. Let Mn,1 be a geodesically complete connected
Lorentzian spin manifold with non-trivial real Killing spinorϕ ∈ Γ (S) to±1

2 andQϕ > 0.
In this case, the level surfacesu−1(±√

Qϕ) are degenerated and decomposeM into the
following three open sets (given curvatures following formEq. (6)):

• V>− = {p : u(p) > +√
Qϕ} containing level surfaces ofu being Riemannian submani-

folds with negative scalar curvature and timelike normal vector fieldξ ,
• V+ = {p : u2(p) < Qϕ} containing level surfaces ofu being Lorentzian submanifolds

with positive scalar curvature and spacelike normal vector fieldξ ,
• V<− = {p : u(p) < −√

Qϕ} containing level surfaces ofu being Riemannian submani-
folds with negative scalar curvature and timelike normal vector fieldξ .

Theorem 29 (Real Killing spinors withQϕ > 0 on V+). Let Mn,1 be a geodesically
complete Lorentzian manifold with real Killing spinorϕ ∈ Γ (S) to±1

2 andQϕ > 0. Then
V+ is isometric to

F cos(t) ×
(
−π

2
,
π

2

)
,

whereF = u−1(0) is a geodesically complete Lorentzian manifold admitting real Killing
spinors. Furthermore,

dimK±(1/2)(V+, gM) = dimK+(1/2)(F, gF )+ dimK−(1/2)(F, gF ) if n is even,

dimK±(1/2)(V+, gM) = dimK+(1/2)(F, gF ) = dimK−(1/2)(F, gF ) if n is odd.

Proof. LetF = u−1(0), then the length functionu along the geodesicγ with γ ′(0) = ξ(x)

satisfiesu(±(π/2)) = ±√
Qϕ (becauseLemma 19andEq. (3)imply u(t) = √

Qϕ sin(t))
for everyp ∈ F . The map

Ψ : F ×
(
−π

2
,
π

2

)
→ V+, (x, t)  → Φt(x)

is injective because byEq. (3),u is strictly increasing along integral curves ofξ and therefore
diffeomorphism on its image.

So, we only have to show thatΨ is surjective. Letp ∈ V+ arbitrary andγ be the geodesic
tangent toξ in p. Thenγ stays inV+ on an interval(t−, t+) containingp. The boundaries



C. Bohle / Journal of Geometry and Physics 45 (2003) 285–308 305

of the interval are defined to be the numbers closest to zero such thatu(t±) = ±√
Qϕ . So

every point is connected toF by an integral curve ofξ andΨ is surjective.
By Lemma 21, Ψ is an isometry for the warping functionf (t) = u′(t)/u′(0) = cos(t).

F is a totally geodesic submanifold, because for any two vector fieldsX, Y ∈ X(F ), we
have

IF (X, Y ) = projξ (∇M
X Y) = −g(∇M

X Y, ξ)ξ = g(Y,∇M
X ξ) = − u√

εv
g(X, Y ) = 0,

whereIF is the two fundamental forms ofF . So geodesic completeness ofM and the fact
thatF is closed inM, implies geodesic completeness ofF .

The spin geometric part of the statement is a direct consequence ofTheorems 6
and 7. �

Theorem 30 (Real Killing spinors withQϕ > 0 on V−). Let Mn,1 be a geodesically
complete Lorentzian spin manifold with real Killing spinorϕ ∈ Γ (S) to λ = ±1

2 with

Qϕ > 0. Then the open setsV≷− = {p : u(p) ≷ ±√
Qϕ} are isometric to

Ff × I1,1,

where F is a level surfaceu = ±c (for arbitrary c >
√
Qϕ) and

f (t) = cosh(t)∓
√

c2

c2 −Qϕ

sinh(t),

and

I =



−∞, Artanh

+
√
c2 −Qϕ

c2

  , u = +c,

 Artanh

−
√
c2 −Qϕ

c2

 , ∞
 , u = −c.

F is a complete Riemannian spin manifold with

dimK±(1/2)(V
≷
− , gM) = dimK

(i/2)
√

Qϕ/(c2−Qϕ)
(F, gF )

+dimK−(i/2)
√

Qϕ/(c2−Qϕ)
(F, gF ) for neven,

dimK±(1/2)(V
≷
− , gM) = dimK

(i/2)
√

Qϕ/(c2−Qϕ)
(F, gF )

= dimK−(i/2)
√

Qϕ/(c2−Qϕ)
(F, gF ) for nodd.

Proof. Let p ∈ V≷− . Let γ be the geodesic such thatγ ′(0) = ξ(0). The length function
u(t) = u(0) cosh(t) + u′(0) sinh(t) alongγ is strictly decreasing, as long asγ stays in

V−. Let t0 = Artanh(−(u′(0)/u(0)))=(5)Artanh(±
√
(u2(0)−Qϕ)/u2(0)) be the zero of

f (t) = u′(t)/u′(0) and extremal point ofu.
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We haveu(t0) = sgn(u(p))
√
Qϕ , because

u(t0) = cosh(t0)

(
u(0)− u′(0) tanh

(
Artanh

(
−u′(0)

u(0)

)))
= cosh(t0)

(
u2(0)− (u′)2(0)

u(0)

)
(3)= cosh(t0)

(
u2(0)+ v(0)

u(0)

)
= cosh(t0)

(
Qϕ

u(0)

)
,

and cosh2(t0) = 1/(1− tanh2(t0)) = u2(0)/Qϕ (by definition oft0).
At time t0, the geodesicγ intersects one of the degenerate level surfaces given by

v−1(0) = u−1(
√±Qϕ).

For c >
√
Qϕ andF = u−1(±c). Then

Ψ : F × I → V
≷
− , (x, t)  → Φt(x)

is defined for

I =



−∞, Artanh

+
√
c2 −Qϕ

c2

  , u = +c,

 Artanh

−
√
c2 −Qϕ

c2

 , ∞
 , u = −c.

The map is injective and local diffeomorphism. It is surjective, because for anyp ∈ V≷− the
geodesicγ throughξ in p intersectsF .

The spin geometric part of the statement is a direct consequence ofTheorems 6 and
7. F can be proved to be geodesically complete by the same method as in the case
Qϕ = 0. �

5.4. Real Killing spinors withQϕ < 0

In the preceding section, we have proved that any complete Lorentzian spin manifold of
dimensionn ≥ 3 admitting a non-trivial real Killing spinor to±1

2 with first integralQϕ < 0
is a warped product of the form

Mn,1 = Fn−1
cosh × R1,1,

whereF is a complete Riemannian manifold admitting a real Killing spinor. Conversely,
Theorems 6 and 7imply that every manifold of this form admits a real Killing spinor. The
question is, whether it admits a Killing spinorϕ with first integralQϕ < 0.

From Theorem 4, we immediately get the following list of all possible candidates for
complete simply connected Lorentzian manifolds with Killing spinors to±1

2 with Qϕ < 0:

• Sn,1 = Sn−1
cosh × R1,1 for all n ≥ 3,
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• M2m+2,1 = F 2m+1
cosh × R1,1, whereF is a complete 1-connected Einstein–Sasaki

manifold(m ≥ 2),
• M7,1 = F 6

cosh × R1,1, whereF 6 is a complete 1-connected nearly Kähler non-Kähler
spin manifold, and

• M8,1 = F 7
cosh×R1,1, whereF 7 is one of the complete 1-connected manifolds admitting

a “nice” 3-form.

The next two theorems show that at least in the first two cases there is a Killing spinor
with Qϕ < 0 (except on the sphereS3,1, whereQϕ = 0 for all spinors). The proof of both
theorems involve explicit calculation with the spinor representation that we do not want to
carry out here (see[9] for details).

Theorem 31. LetF 2m+1 be a complete1-connected Einstein–Sasaki manifold(m ≥ 2),
then

M2m+2,1 = F 2m+1
cosh × R1,1

is a complete1-connected Lorentzian spin manifold admitting a real Killing spinorϕ to
±1

2 with first integralQϕ < 0.

Theorem 32. On the Lorentzian spheresSn,1 = Sn−1
cosh × R1,1 of dimensionn ≥ 4,

there exists a Killing spinorϕ ∈ Γ (S) with Qϕ < 0 for each Killing number±1
2.

In both cases, we even show that if we have a warped product of the given form, then
there is a Killing spinorϕ which recovers the original warped product structure, i.e. the
normed gradient fieldξ of the length functionu = 〈ϕ, ϕ〉 of the spinor is equal to∂/∂t .
In the case thatF is an Einstein–Sasaki manifold which is neither a sphere nor a Sasaki-3
manifold, all Killing spinorsϕ satisfyQϕ < 0 and recover the warped product structure.
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